Triangular Diatom (Triceratium)

Diatoms are single-celled, plant-like organisms found throughout the world's oceans and freshwater. They form dense, short-lived blooms that the rest of the ocean food web depends on, like microscopic rainforests that come and go with the weather.

Their exoskeletons are made of silicate (glass) and can take a huge variety of geometric forms. Triceratium diatoms are often triangular, although they can take other shapes as nutrient conditions change. Like all diatoms, their exoskeletons are made of two halves that fit together like the lid and base of a traditional origami box (masu).

Collapse.

(5)

(6)

Flatten completely. Turn around.

Fold in half. Make a sharp crease.

Reverse the orientation of shown creases. Turn around.

Prolong the folds till the edge. Repeat on the other sides.

BOTTOM PART

The bottom half of the diatom must be smaller than the lid to fit inside. To do that we change slightly the fold in step 4. Instead of folding to the top, we fold a bit under. This defines the size of the bottom. You can experiment with the position to obtain boxes which are smaller and smaller.
(4)

Fold slightly under the top. Make a sharp crease.

Prolong the folds till the edge. Repeat on the other sides.
(17)

Start collapsing the corner.
(13)

Lock the corner by folding the flap over the layers.

Constructing an Equilateral Triangle

(3)

From a Square

(1)

Pinch softly only on the sides.
(2)

Bring the corner to the fold while keeping the bottom corner sharp.

Repeat with the left corner.

From a Rectangle

Ideal to obtain several triangles. If you use the long half of A4 (or letter format) paper, you can get three triangles.
(1)

(2)

Bring the corner to the fold while keeping the bottom corner sharp.
(3)

(4)

(6)

Cut along the lines to obtain equilateral triangles.
(5)

Continue repeating steps 4-5 till the end of a rectangle.

Origami Basics (commented diagram)

Origami Symbols
Edge of the paper/flap

Existing crease
Invisible layers

